Diffusion Tensor Imaging Characteristics of Normal Human Cervical Spinal Cord at 3T [Presidential Award Proceedings]

Khin K. THA¹, Satoshi TERAE², Kinya ISHIZAKA², Tomoyuki OKUAKI³, Makoto HIROTANI⁴, Noriyuki FUJIMA², Akiko TSUKAHARA², Hiroki SHIRATO¹

Departments of ¹Radiobiology and Medical Engineering and ⁴Neurology, Hokkaido University Graduate School of Medicine N-15, W-7, Kita-ku, Sapporo 060–8638 ²Department of Radiology, Hokkaido University Hospital ³Medical Satellite Yaesu Clinic

Background and Purpose : Recent advancement in magnetic resonance (MR) imaging technology has allowed acquisition of high resolution diffusion tensor imaging with reduced field-of-view MR imaging (rFOV-DTI). We attempted to identify the DTI characteristics of the normal human cervical spinal cord using rFOV-DTI.

Methods : All examinations were performed using a 3-tesla MR imaging scanner. Forty-three normal subjects (21 men, 22 women, aged 24 to 68 years) underwent rFOV-DTI using parameters : repetition time (TR), 2219 ms; echo time (TE), 81 ms; FOV = 60×32 mm; pixel size = 0.8×0.8 mm; b = 1000 s/mm^{-2} ; number of diffusion gradient directions = 6; and axial plane. We evaluated the major DTI indices-fractional anisotropy (FA), mean diffusivity (MD), and parallel ($\lambda_{//}$) and perpendicular diffusivity (λ_{\perp}) values-for each component and vertebral level of the cervical spinal cord.

Results : FA, MD, and λ_{\perp} varied significantly among the white matter columns. The posterior column had the largest FA and smallest MD and λ_{\perp} values, whereas the anterior column had the smallest FA and largest MD and λ_{\perp} values. $\lambda_{//}$ did not differ significantly among the white matter columns. FA tended to decrease and $\lambda_{//}$ and λ_{\perp} tended to increase with descending cervical vertebral level. There were also gender- and age-related variations in the absolute values of the major DTI indices.

Conclusions : Quantitative values of the major DTI indices vary among the components and vertebral levels of the cervical spinal cord. Normative values are necessary in interpreting the major DTI indices. rFOV-DTI allows quantitative assessment of the major DTI indices of normal human cervical spinal cord, which reflects the cord's histological nature.

Keywords : DTI, normal human cervical spinal cord Received November 18, 2010