Diffusion tensor tractography と fMRI を組み合わせた 皮質脊髄路抽出法

鈴木雄一1,2, 八木一夫1, 小玉卓史3, 篠浦伸禎4

1首都大学東京大学院人間健康科学研究科 2東京大学医学部附属病院放射線部 3千葉県がんセンター放射線治療部・物理部 4東京都立駒込病院脳神経外科

はじめに

脳機能画像(functional MRI:fMRI)は, BOLD(blood oxygenation level dependency) 法^{1),2)}を利用したもので,非侵襲的に局所の活 動した脳機能を画像化する方法である.既に研 究のみならず臨床応用もされており,脳外科手 術において,一次運動野を術前に決定するのに も有用とされている³⁾.しかし,脳血流の変化 を画像化しているため,灰白質の情報が主であ り,白質の情報を画像化するのには不向きであ る.

一方,白質を情報化するという特徴をもつの が,拡散テンソル画像(diffusion tensor imaging:DTI)^{4),5)}およびそれを基にした拡散テン ソルトラクトグラフィ (diffusion tensor tractography:DTT)⁶⁾である.DTI は,6 個の未 知数からなり,最低6方向の異なる MPG (motion probing gradient)パルスを印加した 画像と印加しない T₂WI の7種類の画像を撮 像し,各要素を計算して求めることで画像化す る方法である.MPG が6軸の場合は,14 面体 の頂点の位置を測定するようにして各要素を精 円体に近似し,視覚化することが可能になる. また MPG の印加方向を増加させれば,より詳 細な多面体の頂点を求めることができ,求めら れる拡散テンソルの信頼性は向上する一方で, ボクセル内での拡散が複雑であると,拡散テン ソルでは正確に表現できない場合がある^{7),8)}. DTT は, DTI の楕円体の第一成分を追跡し神 経走行を描出する画像である.DTT も拡散が 複雑な場合,正確な表現ができない場合がある が,皮質脊髄路のような比較的走行が単純な脳 白質神経を非侵襲的に,かつ3次元的に描出 可能である^{9),10)}.

これまでに,DTT および fMRI 単独の研究 報告は多くされているが,これらを組み合わせ た報告はまれである.例えば Guye ら¹¹⁾は,手 指の tapping による fMRI の賦活部位に関連す る DTT がどの程度の割合で存在するかという 報告をしている.Toosy ら¹²⁾は,視覚刺激に よる fMRI の賦活部位とその領域の FA 値との 関係を調べた報告をしている.

しかし,体の部位別に皮質脊髄路を,fMRI の賦活部位を DTT の target point として組み 合わせて分離描出し,精度の検証を行った報告 はない.今回,健常人においてこの手法を用い 上肢・下肢として分離描出した DTT の検証を 行ったので報告する.

 $+- \nabla - k$ diffusion, tractography, fMRI, primary motor area, corticospinal tract

対象と方法

本研究で検証する対象を fMRI と DTT のど ちらにおいても多くの研究が対象としている運 動神経系, fMRI では一次運動野における手と 足首の領域, DTT では皮質脊髄路とした.

1. 対象

健常人ボランティア利き手が右手,利き足が 右足9人(男性7人,女性2人)と利き手が 左手,利き足が左足の男性1名の計10名(平 均年齢22.3歳)を対象とした.また本研究は, 首都大学東京研究倫理審査委員会の承認を得 て,被験者に対して書面によるインフォームド コンセントを実施した.

2. 方法

1) 撮像装置と撮像条件

1.5T MR 装置 (Signa Horizon LX ver8.3/ 9.0, GE-YMS) を用い, DTI 元画像(任意の 多軸撮像を行えるように独自に開発した single-shot SE-EPI, TR/TE 10000/97.3 ms, スラ イス厚 4.0 mm, スライス間隔 0.0 mm, FOV 24×24 cm², マトリックスサイズ 128×128, 加算回数 1, b=1000 s/mm² の 42 軸の MPG を印加, T₂WI と合わせて 43 通り), fMRI 元 画像 (GRE-EPI, TR/TE 3000/82.5 ms, スラ イス厚 5.0 mm, スライス間隔 0.0 mm, FOV 24×24 cm², マトリックスサイズ 128×128, 加算回数 1), T₁WI (Fast-SPGR, TR/TE 26.0/ 2.4 ms, スライス厚 2.3 mm, スライス間隔 0.0 mm, FOV 24×24 cm², マトリックスサイ ズ 256×256,加算回数 1)を撮像した.その 際, coregistration による位置ずれを最小限にす るために、各画像の撮像範囲をほぼ一定とし、 1スライス目(頭頂)のSI座標を同一とした. 2) fMRI

ブロックデザインを用い,各ブロックを30 秒とした.またブロックの間に30秒のレスト を挟んで計3分30秒の撮像を行った.タスク は、①右手の把握運動、②左手の把握運動、③ 右足首の屈曲-伸展運動、④左足首の屈曲-伸展 運動の4種類を施行した.得られた結果か ら、一次運動野を含む領域に賦活部位が得られ た場合のみを対象とした.Case No.5の④左 足首の屈曲-伸展運動のみ賦活部位が得られな かったため、それと比較する②左手の把握運動 とともに対象から除外した.

3) 画像解析

コンピュータ言語プログラム IDL6.0 (Research Systems 社) をソースコードとして用い て作成したプログラムにおいて DTI 元画像お よび fMRI 元画像の画像再構成を行い, DTI 元 画像のゆがみ補正処理¹³⁾を行った.その後, Fig.1 に示す手順で MATLAB6.1 上の SPM2 (Wellcome Department, University College, London, UK) で画像処理¹⁴⁾を行い, すべての 画像を registration した. 続けてフィルターサ イズをマトリックスサイズの2倍の4mmで fMRI に対して smoothing 処理を行い,統計解 析を行った.t検定を行い,有意差の検定は危 険度 p = 0.001 (uncorrected) とした. その後 賦活部位の結果を MRIcro 上で一次運動野を 含む賦活部位のみとし、DTT に用いる ROI と した.

また,独自に開発した拡散テンソル計算ソフト(DTI-Analyzer)^{6),15)}を使用し,画像処理した DTI 画像から FA map や Color map など各種拡散バラメータを算出した.

4) fMRI の賦活部位を用いた DTT

DTT の描出には, DTI-Analyzer を使用した.本手法は 2-ROI 法¹⁶⁾を用い, seed point として手動で大脳脚に設定し, target point として抽出した fMRI の賦活部位に設定した(Fig. 2). FA 値の閾値は 0.20 とし, DTT が描出されなければ閾値を 0.01 ずつ 0.10 まで減少させていき, 描出された時点で結果とした^{17)~19)}. 以後,手の賦活部位を使用して描出した DTT

2007 年 12 月 11 日受理 2008 年 3 月 3 日改訂 別刷請求先 〒113-8655 東京都文京区本郷 7-3-1 東京大学医学部附属病院放射線部 鈴木雄一 を「上肢の **DTT**」および足首の賦活部位を使 用して描出した **DTT** を「下肢の **DTT**」と称 する.

3. 検討項目

1) DTT の内包後脚における精度評価

描出した各 DTT が,解剖学的走行と同じ く,皮質脊髄路の経路である内包後脚を通過し ているかどうかを評価した.本手法は,T₁WI と DTI および fMRI を registration している ためすべて同じスライス数のデータとして扱え

Fig. 1. Process of co-registration of fMRI and diffusion tensor images (DTI) SPM, statistical parametric mapping ; F-SPGR, fast spoiled gradient-echo る (Fig. 1). そこで今回は,内包後脚の中で も T₁WI 上で脳弓柱を切るスライスを評価位 置とした.そして,T₁WI と registration した FA map 上での内包後脚を通過しているかどう

Fig. 2. The two ROIs in DTT are shown on three-dimensional MRI. The white arrowhead shows the area of M1 activated in fMRI, and the white arrow shows the cerebral peduncle, which was set manually.

Fig. 3. (a) Case No. 2; (b) Case No. 6 Blue matrices represent DTT with areas activated during ankle motion. Yellow matrices represent DTT with areas activated on hand grasping. In (a) and (b), blue matrices in red circle do not pass the posterior limb of the internal capsule.

かを検討した.評価は,診療放射線技師2名 と脳神経外科医1名それぞれが5段階評価を した.内包後脚を完全に通過=5,ほぼ通過= 4,どちらとも言えない=3,ほぼ通過してい ない=2,全く通過していない=1とし,3人 の平均を算出した.

2) 内包後脚における四肢の DTT の前後関係 の評価

前項の 3-1) において評価点の平均が 4.0 点 以上の DTT のみを使用して評価を行った.評 価は,1) と同一スライスで行った.こちらも 診療放射線技師 2 名と脳神経外科医 1 名それ ぞれが 5 段階評価をした.完全に上肢の DTT が下肢の DTT の前方を走行(解剖学的走行と 一致)=5,一部重複があるが上肢の DTT が下 肢の DTT の前方を走行(解剖学的走行とほぼ 一致)=4,どちらとも言えない=3,一部重複 があり解剖学的走行とほぼ不一致=2,解剖学 的走行と不一致=1 とし,平均を算出した.

結 果

1. fMRI の賦活部位を用いた DTT

fMRIの賦活部位を target point, 大脳脚を seed point とした DTT は, 全例において描出 可能となった. 描出したときの FA 値の閾値を Table 1 に示す. 上肢の DTT は, FA 値 0.15 ~0.20(0.05 までの減少)で描出した.一方, 左下肢の DTT も, FA 値 0.15~0.20 で描出し た. しかし,右下肢の DTT では, FA 値 0.15 ~0.20 での描出は 5/10 例(50.0%)となり, それ以上の FA 値減少での描出は 5/10 例 (50.0%)となった.全体としては、FA値の 閾値を 0.20 より下げなければ描出できなかっ た DTT は、20/38 例(52.6%)となった. 閾 値の平均は,右上肢 0.186±0.0180,左上肢 0.190±0.0113, 右下肢 0.154±0.0397, 左下 肢 0.183±0.0259 であった(平均値±標準偏 差).上肢と下肢を比較した場合,一般的に下 肢の FA 値は上肢に比して低く標準偏差も大き

 Table 1. Result of DTT with Activated Area on fMRI

Case	Sex	Age	Right Hand	Left Hand	Right Ankle	Left Ankle
1	Μ	23	0.17	0.19	0.17	0.20
2	Μ	22	0.15	0.17	0.10	0.15
3	F	22	0.20	0.20	0.17	0.20
4	Μ	21	0.20	0.18	0.20	0.15
5	Μ	21	0.20	—	0.13	—
6	F	21	0.20	0.20	0.10	0.20
7	Μ	22	0.18	0.20	0.14	0.20
8	Μ	24	0.18	0.20	0.14	0.20
9	Μ	26	0.20	0.19	0.20	0.15
10	Μ	21	0.18	0.18	0.19	0.20

These values are FA value when DTT was visualized. —=Unable to be evaluated because of no activated part.

い傾向にあった.

2. DTT の内包後脚における精度評価

3名の評価点の平均結果をTable 2に示す. 5段階評価中,内包後脚を通過していると判定 した評価 4.0 以上の症例は,両上肢は全例で あった. また左下肢は全例であったが, 右下肢 は8/10例(80.0%)となり、2例(Case No. 2, 6) は,評価点平均が1点台と極めて低い値 となった.以上から,両上肢および左下肢の DTT は、右下肢に比べ精度良く内包後脚を通 過しているという結果が得られた.評価点平均 が低かった2例(Case No. 2, 6)の全DTTを 表示した画像を供覧する (Fig. 3). Case No. 2 の Fig. 3(a) および Case No. 6 の Fig. 3(b) ど ちらの場合も,右下肢のDTT(左大脳半球中 の青色)が、内包後脚ではなく視床を通過する 結果となった.それ以外の DTT (両上肢の DTT: 黄色, 左下肢の DTT: 右大脳半球中の 青色)は、内包後脚を通過する結果となった. 3. 内包後脚における四肢の DTT の前後関係 の評価

結果2の評価から,左右大脳半球ごとに上 肢と下肢のDTT がどちらも評価点平均4.0点

Case	Right Hand	Left Hand	Right Ankle	Left Ankle
1	5.0	5.0	4.0	4.0
2	5.0	5.0	1.3	5.0
3	5.0	5.0	5.0	5.0
4	5.0	4.0	5.0	5.0
5	5.0	—	4.3	_
6	5.0	5.0	1.0	5.0
7	5.0	5.0	4.3	4.7
8	5.0	5.0	5.0	4.7
9	5.0	5.0	5.0	5.0
10	5.0	5.0	5.0	4.0
4.0 or more points	10/10	9/9	8/10	9/9

 Table 2. Evaluation of Results by 3 Estimators on the Posterior Limb of the Internal Capsule

Average evalution points; 5, complete passing on posterior limb of internal capsule; 4, almost passing on posterior limb of internal capsule; 3, no opinion; 2, almost not passing on posterior limb of internal capsule; 1, not passing on posterior limb of internal capsule.

-= Unable to be evaluated because of no DTT.

Case	Right Brain	Left Brain
1	5.0	5.0
2	5.0	—
3	4.3	1.0
4	3.7	4.7
5	—	5.0
6	4.7	—
7	4.7	5.0
8	5.0	5.0
9	5.0	5.0
10	4.7	3.0

Table 3. Comparison between DTT and Anatomy

Average evalution points; 5, matching anatomical nerve fibers on posterior limb of internal capsule; 4, almost matching anatomical nerve fibers on posterior limb of internal capsule; 3, no opinion; 2, almost no matching with anatomical nerve fibers on posterior limb of internal capsule; 1, no matching with anatomical nerve fibers on posterior limb of internal capsule; -= Unable to be evaluated because of no DTT.

以上の症例(右大脳半球9例,左大脳半球8 例)を対象として評価を行った.

3名の評価点の平均結果をTable 3に示す. 右大脳半球では、5.0 点が 4/9 例(44.4%),4 点台が 4/9 例(44.4%),3 点台が 1/9 例 (11.1%)であった.また左大脳半球では、5.0 点が 5/8 例(62.5%),4 点台が 1/8 例(12.5 %),3 点台が 1/8 例(12.5%),1.0 点台が 1/ 8 例(12.5%)であった.

評価が4点未満だった画像を供覧する(Fig. 4). 右大脳半球での例(Case No. 4)では,前 後の位置が同じ位置を通過していた(Fig. 4 (a)). そのためDTTは,上肢(黄色)のみの 表示となっている.また左大脳半球での2例 (Case No. 3, 10)では,Case No. 3では,右下 肢のDTTが右上肢のDTTよりも前方を走行 した(Fig. 4(b)).またCase No. 10も,前後 の位置がほとんど変わらない位置を通過した (Fig. 4(c)).

考 察

1. fMRI

本実験では、ほぼ全例で一次運動野に有意な 賦活部位を得られた. 足首の賦活部位が運動野 のみに限局せず、運動前野や感覚野と一体と なっている場合が多く見られた.先行研究で, 運動に複雑さが増加すると賦活する部位が増加 するという報告がある. Shibasaki ら²⁰⁾は PET を用いて、右利き健常人男性に手指の単純な対 立運動時と複雑な対立運動をさせたときでは, 複雑な対立運動をさせた際に補足運動野や対側 運動前野などに賦活が得られたと報告してい る.本実験では手のタスクではなく、足首のタ スクにおいての結果であるため、この報告と同 じとは言えないが、今回の運動タスクにおいて 足首の屈曲-伸展運動の方が,手の把握運動よ り複雑な運動負荷に相当するためではないかと 考えられる.

また手の賦活部位は、足首の賦活部位よりも

DTT と fMRI を用いた皮質脊髄路抽出法

Fig. 4. (a) Case No. 4; (b) Case No. 3; (c) Case No. 10 Blue matrices represent DTT with areas activated during ankle motion. Yellow matrices represent DTT with areas activated on hand grasping.

(a) Blue matrices and yellow matrices passed the same position.

(b) Blue matrices ascend anterior to yellow matrices.

(c) Blue matrices and yellow matrices passed about the same position.

Fig. 5. (a) Case No. 4; (b) Case No. 3; (c) Case No. 10

(a) Axial image on MRI. For ROI on fMRI, yellow indicates area activated by left hand grasping and blue indicates area activated by left ankle flexion. There were overlapping between yellow and blue.

(b) Axial MRI. For ROI of fMRI, yellow indicates area activated by right hand grasping and blue indicates area activated by right ankle flexion.

(c) Axial MRI. For ROI of fMRI, red indicates area activated by right hand grasping and blue indicates area activated by right ankle flexion.

(b) and (c) were the same reason. There are activated areas on the premotor area and a primary motor area and DTT run to the premotor area. Context thus did not match anatomy in the posterior limb of the internal capsule.

大きく,かつ一次運動野全体に広がるような傾向が示された.これは Penfield ら²¹⁾の報告にあるように,一次運動野における手指の運動に関連する筋に関連している領域が,他の身体部

位の筋に関連している領域に比べ,分布が空間 的に広いことを示したものと考えられる.

 fMRI の賦活部位を用いた DTT 本手法を用いた DTT は,全例において描出

日磁医誌 第28巻2号(2008)

Case	Right Hand	Left Hand	Right Ankle	Left Ankle
1	$0.012{\sim}0.22(0.076)$	$0.0028 \sim 0.36(0.099)$	$0.024{\sim}0.19(0.081)$	$0.015 \sim 0.47(0.12)$
2	$0.083 {\sim} 0.35(0.081)$	$0.000 \sim 0.40(0.087)$	$0.032{\sim}0.14(0.078)$	$0.018{\sim}0.16(0.053)$
3	$0.012{\sim}0.22(0.076)$	$0.028 {\sim} 0.36(0.009)$	$0.024{\sim}0.19(0.081)$	$0.015{\sim}0.47(0.12)$
4	$0.0082{\sim}0.50(0.11)$	$0.0059{\sim}0.52(0.11)$	$0.0091{\sim}0.56(0.091)$	$0.010{\sim}0.47(0.088)$
5	$0.0092{\sim}0.35(0.071)$	$0.010 \sim 0.42(0.085)$	—	—
6	$0.0050 \sim 0.49(0.11)$	$0.0088 {\sim} 0.63(0.10)$	$0.024{\sim}0.19(0.081)$	$0.015{\sim}0.48(0.11)$
7	$0.0096{\sim}0.60(0.11)$	$0.011 {\sim} 0.53(0.13)$	$0.015{\sim}0.28(0.089)$	$0.015{\sim}0.53(0.097)$
8	$0.012{\sim}0.48(0.093)$	$0.016{\sim}0.35(0.099)$	$0.011{\sim}0.27(0.081)$	$0.012{\sim}0.35(0.070)$
9	$0.0090 \sim 0.36(0.083)$	$0.0074{\sim}0.32(0.085)$	$0.032{\sim}0.22(0.090)$	$0.030{\sim}0.23(0.078)$
10	$0.011{\sim}0.36(0.090)$	$0.0087{\sim}0.36(0.080)$	$0.0060{\sim}0.38(0.082)$	$0.011{\sim}0.31(0.092)$

Table 4. FA Values in Activated Area (minimum~maximum (average))

—= No activated areas in or near M1.

可能だった.しかし,FA値の閾値を0.20より 下げなければ描出できなかった DTT は, 20/ 38例(52.6%)となった. その理由は, target point が fMRI の賦活部位であるということが 考えられる. 本手法の target point である fMRI の賦活部位は、灰白質を非常に多く含むことに なる^{1),2)}. 灰白質は神経線維を含んではいる が、神経細胞が豊富に存在するため異方性は軽 度である.年齢や個人差はあるが,大脳皮質で の FA 値は 0.1~0.3 を示すという報告があ る^{18),19)}. 全例の賦活部位の FA 値を比較する と,脳脊髄液から灰白質,白質まで幅広く含ん でいることが示された (Table 4)¹⁸⁾. そのため 0.20 よりも FA 値の閾値を低下させた条件設 定をしなければ、描出が可能にはならなかった と推定する.

また、上肢に比べて下肢の DTT の方は FA 値が低く、標準偏差も大きい傾向であったが、 DTT の target point である賦活部位の大きさ が影響していると考えられる. 各賦活部位のマ トリックス数を比較した(Table 5). 手の賦活 部位の方が足首の賦活部位よりも小さかった例 は、左大脳半球・右大脳半球ともに 1 例のみ であった. これらから、DTT の target point が大きい方が、FA 値を低下させずに DTT が 到達する可能性が高くなるためではないかと考

Table 5. Size of ROIs (number of voxels)

-						
Case	Right Hand		Right Ankle	Left Hand		Left Ankle
1	78	>	57	195	<	238
2	430	>	7	698	>	115
3	854	>	484	806	>	494
4	3069	>	1173	1987	>	934
5	528	>	286			
6	1446	>	114	1756	>	114
7	1924	>	97	1177	>	472
8	1343	>	243	654	>	479
9	839	>	26	615	>	37
10	636	<	787	828	>	260

—=No activated areas in or near M1.

> = More voxels for right (left) hand than right (left) ankle.

> = Fewer voxels for right (left) hand than right (left) ankle.

えられる.

また賦活部位の大きさは,fMRIの平滑化 フィルターサイズに依存する.今回は一定とし たが,平滑化フィルターサイズを変化させた際, DTT の結果に差異が生じるかについても検討 を行う必要があると考えられる.

3. DTT の内包後脚における精度評価 両上肢と左下肢の DTT では,評価点の平均 が 4.0 点以上となった. したがって高い精度で, 皮質脊髄路を描出していると考えられる. 右下 肢の DTT が 2 例 (Case No. 2, 6 Right Ankle) で 2.0 点以下となったが,それ以外の 8 例は 4.0 点以上であり,他より精度は劣るものの皮 質脊髄路の描出は可能であったと考えられる.

評価が2.0 点以下となった2例(Case No. 2, 6 Right Ankle)は、Fig. 3(a)、(b)にあるよう にDTTが視床を通過したため評価が低い値と なった.その理由として、大脳脚でのROIの 大きさが考えられる.ROIをFA map上で大 脳脚の示す領域よりも大きく設定したことによ り、内側毛帯の一部も領域として含んでしまっ たため延髄視床路が描出されてしまったと考え られる.その結果、DTTは視床までは延髄視 床路を描出し、そこから皮質脊髄路にmiss trackingしてしまったと考えられる.延髄視床 路は、視床と内側毛帯をDTTで結ぶことは既 に報告されており²²⁾、本研究での結果は、同 様にこれを示したものであると言える.

さらに、miss tracking が視床で生じた理由 としては、視床のもつFA 値が考えられる.視 床はある程度の異方性をもち、FA 値は 0.3~ 0.5 という報告がある¹⁸⁾.本実験でのFA 値の 閾値は 0.20 以下であるため、内包後脚と視床 での部分容積効果により、今回のような miss tracking が生じる可能性は十分に考えられる. また本手法の画像は、各画像間の miss regis-

tration などの誤差も含んでいることに注意す る必要がある.

 内包後脚における手の DTT と足の DTT の 前後関係の評価

評価点の平均4.0 点以上が右大脳半球では8/ 9 例(88.8%), 左大脳半球では6/8 例(75.0%)となった.したがって,上肢と下肢の DTT が内包後脚を通過していれば,高い確率 で解剖学的な前後関係に一致すると考えられる.

DTT が描出されたが評価が低かった右大脳 半球の例(Case No. 4)では,走行が重複して いた(Fig. 4(a)).理由としては,fMRI(黄: 手,青:足)の賦活部位(Fig. 5(a))が重複し ていることが挙げられる.上肢と下肢のDTT どちらとも,重複した賦活部位に到達したた め,内包後脚での前後関係が解剖学的走行とは 一致しなかったと判定する.

同様に,評価が低い値となった左大脳半球の
例(Case No. 3)では,足首の賦活部位が運動
前野と一次運動野に連なり(Fig. 4(b)),DTT
の最終到達点が運動前野となってしまったた
め,上肢と下肢のDTTの前後関係が逆転して
しまったと推定する(Fig. 5(b)).Case No.
10も同じ理由により,上肢と下肢のDTTの
前後関係が逆転してしまったと推定する(Fig. 5(c)).

このように一部に miss tracking が生じたも のの,足首の賦活部位が一次運動野に限局し, 手の賦活部位と重複せず,上肢と下肢の DTT それぞれが描出されれば,高い精度で解剖学的 走行との一致をすると推定できる.当研究は, 賦活部位を用いて描出した DTT を内包後脚で 判定したものだが,fMRI を用いて手と足の DTT を分離して表示した Smits らの報告²³⁾と 一致した.

結 論

fMRIの賦活部位を用いて皮質脊髄路の DTTを分離描出し、内包後脚において解剖学 的走行との相関を評価した. Miss tracking や miss registration の可能性を理解した上での本 手法の使用は、皮質脊髄路を分離描出する手法 として有効であり、皮質脊髄路を通過する神経 の前後関係を把握する方法としても有用性が示 唆された.

今後,運動学習をした後では脳賦活が減少・ 限局化するという Julien らの報告²⁴⁾に基づ き,賦活部位を限局化させた際 miss tracking を減らせるかどうか,また脳疾患患者において も本手法が有用であるかどうか検証を試みる予 定である.

謝 辞

本稿を終えるに当たり,ご協力いただきまし た首都大学東京八木研究室の諸君,東京大学医 学部附属病院放射線科青木茂樹先生,同病院放 射線部井野賢司技師,並びに技師長美馬和男先 生に厚く御礼申し上げます.なお本論文の要旨 は第35回日本磁気共鳴医学会大会(2007,神 戸)において報告した.本研究は,文部科学省 科学研究費補助金若手研究(B)課題番号 19790857(2007-2009)の助成金を使用して 行った.

文 献

- Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. In: Proc Natl Acad Sci USA, 1990; 87:9868–9872
- 2) Ogawa S, Lee TM, Barrere B : The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 1993; 29 : 205–210
- Sunaert S, Yousry TA : Clinial applications of functional magnetic resonance imaging. Neuroimaging Clin N Am 2001; 11: 221-36
- 4)中田 力: Diffusion, Perfusion Imagingの基
 礎. 日磁医誌 1998;18:340-348
- 5)阿部 修,山田晴耕,大久保敏之,林 直人, 大友 邦,椛沢宏之,高橋良行:拡散強調画像 とテンソル.日磁医誌 2000;20:272-290
- 6) Mori S, Crain BJ, Chacko VP, Van Zijl PC: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45: 265–269
- 7) Jones DK, Horsfield MA, Simmons A : Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999; 42: 515–525
- Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A : *In vivo* fiber tractography using DT-

MRI data. Magn Reson Med 2000; 44:625-632

- 9) Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R : Preoperative and intraoperative diffusion tensor imagingbased fiber tracking in glioma surgery. Neurosurgery 2005; 56: 130–138
- 10) Kamada K, Todo T, Morita A, Masutani Y, Aoki S, Ino K, Kawai K, Kirino T: Functional monitoring for visual pathway using real-time visual evoked potentials and optic-radiation tractography. Neurosurgery 2005; 57:121–127
- 11) Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA, Salek-Haddadi A, Barker GJ, Duncan JS : Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex *in vivo*. Neuroimage 2003; 19:1349–1360
- 12) Toosy AT, Ciccarelli O, Parker GJ, Wheeler-Kingshott CA, Miller DH, Thompson AJ: Characterizing function-structure relationships in the human visual system with functional MRI and diffusion tensor imaging. Neuroimage 2004; 21:1452–1463
- 13) Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I : Eddy-current distortion correction and robust tensor estimation for MR diffusion imaging. MICCAI 2001; LNCS2208 : 186–194
- 14) Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R: Movement-related effects in fMRI time-series. Magn Reson Med 1996; 35: 346-355
- 15) Lazar M, Weinstein DM, Tsuruda JS, et al.: White matter tractography using diffusion tensor deflection. Hum Brain Mapp 2003; 18:306-321
- 16)森 墾,増谷佳孝,青木茂樹,他:tractographyによる皮質脊髄路描出法の比較検討: one-ROI法とtwo-ROI法.日医放会誌 2003; 63:51-53
- 17) Kunimatsu A, Aoki S, Masutani Y, Abe O, Hayashi N, Mori T, Masumoto T, Ohtomo K : The optimal trackability threshold of fractional anisotropy for diffusion tesor tractography of the corticospinal tract. Magn Reson Med Sci 2004; 3:11-17
- 18) 青木茂樹,阿部 修,増谷佳孝.新版これでわ かる拡散 MRI.東京;秀潤社,2005;34-35

- 19) 荒木 力:拡散 MRI ブラウン運動,拡散テン ソルから q 空間へ.東京; 秀潤社, 2006; 206
- 20) Shibasaki H, Sadato N, Lyshkow H, et al. : Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain 1993 ; 116 : 1387–1398
- Penfield W, Rasmussen T. Cerebral Cortex of Man. Hafner Publisher Co. 1968; 248
- 22) Yamada K, Kizu O, Kubota T, et al.: Tractography for arteriovenous malformations near the sensorimotor cortices. AJNR Am J Neuroradiol 2005; 26: 598–602
- 23) Smits M, Vernooij MW, Wielopolski PA, Vincent AJ, Houston GC, van der Lugt A : Incorparating functional MR imaging into diffusion tensor tractography in the preoperative assessment of the corticospinal tract in patients with brain tumors. AJNR Am J Neuroradiol 2007; 28:1354–1361
- 24) Dovon J, Song AW, Karni A, Lalonde F, Adams M: Experience-dependent changes in cerebellar contributions to motor sequence larning. Neurobiology 2002; 99:1017–1022

Corticospinal Tract Extraction Method Combining Diffusion Tensor Tractography with fMRI

Yuichi SUZUKI^{1,2}, Kazuo YAGI¹, Takashi KODAMA³, Nobusada Shinoura⁴

 ¹Graduate Schools of Human Health Sciences, Tokyo Metropolitan University 2–10, Higashiogu 7-chome, Arakawa-ku, Tokyo 116–8551
 ²Department of Radiology, University of Tokyo
 ³Department of Radiation Therapy, Chiba Cancer Center
 ⁴Department of Neurosurgery, Komagome Metropolitan Hospital

Diffusion tensor imaging (DTI), diffusion tensor tractography (DTT), and functional magnetic resonance imaging (fMRI) have received much attention in recent years, but very few reports combine study findings. In a physically unimpaired volunteer, we used activated parts on fMRI as target points for DTT, creating DTT of the corticospinal tract. We then performed fMRI for movement of both hands and flexion-extension exercises of both ankles. When we performed DTT, the threshold of the FA value was 010 to 0.20. We examined whether DTT passed the posterior limb of the internal capsule according to anatomy. In addition, we examined DTT in the context of the hand and ankle. DTT of the upper extremity passed the posterior limb of the internal capsule in all examples, compared to 80% for the right lower extremity and 100% for the left lower extremity. The degree of anatomical agreement was 88.8% in the right cerebral hemisphere and 75.0% in the left cerebral hemisphere. Depicted DTT depends on the size and position of the activated part, but is effective as a technique to identify the corticospinal tract. In addition, this method was suggested to be useful in grasping the context of the nervous system via the corticospinal tract.